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Skin pigment patterns of vertebrates are stunningly diverse,

and nowhere more so than in teleost fishes. Several species,

including relatives of zebrafish, recently evolved cichlid fishes

of East Africa, clownfishes, deep sea fishes, and others are

providing insights into pigment pattern evolution. This overview

describes recent advances in understanding periodic patterns,

like stripes and spots, the loss of patterns, and the role of cell-

type diversification in generating pigmentation phenotypes.

Advances in this area are being facilitated by the application of

modern methods of gene editing, genomics, computational

analysis, and other approaches to non-traditional model

organisms having interesting pigmentary phenotypes. Several

topics worthy of future attention are outlined as well.
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Introduction
Biological patterns are all around us: from regularly

arranged termite mounds over hundreds of thousands

of square kilometers, to rows of cilia in Stentor over just

a few micrometers [1,2]. In between are patterns formed

by cells in tissues, including those generated by pigment

producing cells in the skin. Such patterns can be bril-

liantly colored, muted, or monochromatic, ordered or

haphazard, variable or invariant between individuals,

stable or transmutable over an organism’s lifetime. The

diversity of skin pigment patterns is matched by diversity

in function: helping to avoid predators, facilitating social

aggregation or evaluation of prospective mates, signaling

to rivals, or protecting from UV [3,4]. Here, I focus on

advances in understanding the evolution of pigment

patterns in half of the world’s vertebrates—the bony

fishes.
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Chromatophore origins and arrangements
Pigment patterns of mammals depend on a single type of

pigment cell, the melanocyte, which produces melanin

that can be transferred to keratinocytes for incorporation

into hair. In teleosts and other ectotherms, however,

colors and patterns depend on several classes of pigment

cells, ‘chromatophores,’ that typically retain their

pigments intracellularly [5]. The most well studied cells

are black melanophores. Other chromatophores include

yellow/orange xanthophores containing pteridines

and carotenoids, and iridescent iridophores with flat,

reflective guanine crystals that provide structural colors.

Chromatophores are derived from the embryonic neural

crest, either directly, or indirectly via latent progenitors in

the peripheral nervous system or skin [6–9]. Pigment

patterns of ectotherms thus depend on the types and

arrangements of chromatophores, that is, when and where

these cells differentiate, migrate, proliferate, or die.

Much of what we know about chromatophore patterning

comes from zebrafish, Danio rerio, with its blue–black

stripes (melanophores with iridophores) and yellow–gold

‘interstripes’ (xanthophores with iridophores) (Figure 1a).

This pattern depends on an early influence of the tissue

environment, which provides positional information for

initiating and orienting the pattern, as well as subsequent

interactions within and between chromatophore classes

that allow for a high degree of self-organization

once patterning is underway (Figure 1b) [9–11,12�].
The critical roles of the environment and chromatophore

interactions are evident in the defective patterns of

mutants with perturbations of tissue architecture, missing

chromatophore classes, or loss of specific signals required

for cell–cell communication (Figure 1c, top).

Stripes, bars, and what lies in between
Inferences and approaches from zebrafish can provide a

starting point to understand other patterns, especially of

other Danio species (Figure 1c). For example, Danio
albolineatus has a uniform pattern of intermingled

chromatophores. Yet, a mutational approach revealed

weak, underlying stripes [13], suggesting a striped pattern

has been obscured evolutionarily.

Xanthophores of D. albolineatus are also especially abun-

dant, maturing earlier and over a wider area than in

zebrafish, associated with a cis-regulatory difference that

drives earlier, broader expression of ‘xanthogenic’ Colony

stimulating factor 1. These observations prompted the

hypothesis that so many early xanthophores deprive
www.sciencedirect.com
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Figure 1

(a) (b) (c)

(d) (e)
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Periodic pattern development and evolution. (a) In zebrafish, D. rerio, dark stripes consist of melanophores (dark grey cells) and bluish iridophores

(blue), whereas light interstripes have densely packed yellowish iridophores (yellow) and mature xanthophores (orange). Most melanophores derive

from post-embryonic progenitors that differentiate during the larva-to-adult transition, but some develop directly from neural crest cells and persist

from the embryonic pattern (brown). Some immature xanthophores occur within stripes (pale yellow). (b) During post-embryonic development,

cues from the tissue environment (arrow, upper left) allow iridophores to differentiate in a first interstripe after which interactions among

chromatotophores drive pattern implementation, refinement, and reiteration. Some interactions have positive effects on differentiation, survival or

localization (arrows), others have negative effects (bars), some are at short range (black arrows/bars) whereas others are at long range (grey

arrows/bars). Iridophores of interstripes and stripes are distinct subclasses (see text). During pattern formation and homeostasis, the tissue

environment also provides supportive factors that regulate differentiation, survival, and proliferation (small grey circles). Summarized from Refs. [9–

11,12�]. (c) Pattern variation in Danio showing interstripes and stripes of wild-type D. rerio, and defective pattern in a mutant for colony stimulating

factor 1 receptor a that lacks xanthophores, and therefore, the chromatophore interactions in which xanthophores participate (top row). Also

shown are naturally occurring patterns of other danios mentioned in main text, D. albolineatus, D. nigrofasciatus, D. aesculapii, and D.

margaritatus. (d) In many African cichlids, horizonal stripes (arrow) are found on the flank and these species have lower levels of agrp2 expression

(top). In a species that normally lacks horizontal stripes (middle), inactivation of agrp2 allows an ectopic stripe to develop (bottom, arrow; modified

from Ref. [25��]). (e) Theory predicts a labyrinthine transitional state between light and dark spots (left). In actual pufferfishes, genomic analyses

support the notion of ancestral hybridization giving rise to labyrinthine species (modified from Ref. [38��].
melanophores of directional cues needed for consolidat-

ing into stripes. Indeed, when Csf1 was expressed

similarly in zebrafish, a pigment pattern resembling

D. albolineatus developed, consistent with differential

Csf1 expression contributing to the normal pattern

difference between species [14].

Two recent studies further highlight how evolutionary

changes in the timing or quality of chromatophore inter-

actions can influence patterning. Danio nigrofasciatus has
www.sciencedirect.com 
fewer stripes and interstripes than zebrafish (Figure 1c)

and resembles zebrafish mutants with defects in signaling

by Endothelins, a class of peptides secreted by skin cells

and received by G-protein coupled receptors on pigment

cells. Because hybrids of wild-type zebrafish with

D. nigrofascatus and other Danio species resemble zebra-

fish [9,15], crosses of other danios to zebrafish mutants can

help to screen candidate genes for differences between

species, similar to complementation tests within a

species. When D. nigrofasciatus were crossed to zebrafish
Current Opinion in Genetics & Development 2021, 69:88–96
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endothelin 3b mutants, progeny had fewer melanophores

and iridophores than control hybrids, suggesting a hypo-

morphic allele in D. nigrofasciatus [16��]. Indeed, the

D. nigrofasciatus endothelin 3b allele was expressed at lower

levels than the wild-type zebrafish allele in a common

hybrid background, consistent with a cis-regulatory
change between species. A role for differential expression

in generating the pattern difference was further indicated

by transgenic supplementation of Endothelin 3b expres-

sion in D. nigrofasciatus, which resulted in additional

iridophores and the organization of melanophores into

an additional stripe, similar to zebrafish. Although

Endothelin 3b might be assumed to act directly on

melanophores—as Endothelin 3 acts directly on melano-

cytes in mammals—its primary effect here was on irido-

phores. This in turn suggests a model in which the pattern

difference between species depends, at least in part, on

reduced expression of Endothelin 3b in D. nigrofasciatus,
which leads to fewer iridophores, fewer interstripes, and

an earlier cessation of the iridophore–melanophore

interactions necessary for reiterating stripes.

Another danio, Danio aesculapii, is the sister species of

zebrafish [17] and has dark vertical bars and light

‘interbars’ (Figure 1c). To test if chromatophore interac-

tions are conserved, despite the difference in pattern

orientation, D. aesculapii mutants lacking each chromato-

phore class individually were generated and their

phenotypes compared to those of corresponding mutants

in zebrafish [18��]. Residual patterns in D. aesculapii
suggested a more important role for interactions between

melanophores and xanthophores, and a less important

role for interactions with iridophores, as compared to

zebrafish. To further test whether specific genes differ

in their activities between species, additional mutants

were generated in D. aesculapii for loci thought to mediate

interactions between chromatophore classes. These were

then used in reciprocal hemizygosity tests with wild-type

and mutant zebrafish. One of these candidates, kcnj13,
encodes a potassium channel needed to depolarize mela-

nophore membranes upon contact with xanthophores;

kcnj13 mutant zebrafish have fewer, wider stripes

[19,20]. Hybrid crosses suggested that D. aesculapii and

two other danios have hypomorphic alleles of kcnj13,
compared to wild-type zebrafish, and it will be interesting

to learn how such differences have contributed to pattern

diversification across the genus [18��].

Stripes and bars—and the investigations of them—extend

beyond Danio. In East Africa, hundreds of cichlid species

have originated over tens of thousands to a few million

years with diverse behaviors and morphologies that

include horizontal stripes, vertical bars and other patterns

[21–24]. Stripes have evolved repeatedly, and genetic and

developmental analyses have now identified a pivotal role

for Agouti-related protein 2 (Agrp2) [25��]. Agouti

represses melanin production in amniotes [26–28] and
Current Opinion in Genetics & Development 2021, 69:88–96 
plays a similar role in zebrafish, leading to a pale ventrum

[29,30]. In cichlids, agrp2 is expressed broadly in the skin,

but several striped species express less transcript because

of independently evolved cis-regulatory variants [25��].
These observations suggested a model in which stripe

evolution requires a loss of Agrp2-repression of melano-

phore differentiation, allowing these cells to develop in

new locations. If true, then a species that normally lacks

horizontal stripes might develop them upon inactivation

of agrp2. Indeed, CRISPR/Cas9 targeting of agrp2 led a

vertically barred species, Pundamilia nyererei, to develop a

horizontal stripe resembling that of its close relative,

Haplochromis sauvagei, demonstrating a role for the locus

and the power of applying modern developmental genetic

methods to non-traditional models (Figure 1d).

Besides experiments on fish themselves, mathematical

approaches have been helpful in understanding periodic

patterns and transitions among them. For example,

an agent-based model built on empirical results from

zebrafish suggests that iridophores confer an overall

robustness to zebrafish patterning, whereas differences

in xanthophore effects on iridophores may contribute to

stripe loss in D. albolineatus and spot acquisition in Danio
margaritatus (Figure 1c) [31��]. This and a similar model

[32�] help identify promising hypotheses to test,

especially when pattern differences have a polygenic

basis and when meiotic mapping is not feasible, as is true

for many Danio and other species.

A different mathematical approach has considered

chromatophore arrangements as Turing patterns, with

molecular or cellular dynamics concordant with reaction-

diffusion systems [10,33]. Recent advances have expanded

the biological applicability of such models and place them

within an increasingly rigorous framework for hypothesis

testing [34�,35]. Two new studies hint at this potential. One

of these studies focused on barred and spotted patterns of

catfish, Pseudoplatystoma. Using a more elaborate Turing

model than is typically applied, it was possible to account

for different dynamics of processes occuring in different

tissue compartments: a putative signal generating a pre-

pattern in one layer of skin, and its impact on responding

chromatophores in another layer of skin [36]. The second

study built on an observation from simple Turing

models that dark spots on a light background can transition

to light spots on a dark background through a labyrinthine

intermediate (Figure 1e). This mathematical property

suggested the biological possibility that labyrinthine pat-

terns might sometimes result from hybridization between

species having reciprocal—dark versus light—spots [37].

To test this idea, phylogenetic distributions of 900 labyrin-

thine patterns (across >18,000 species) were assessed rela-

tive to spotted patterns and found to be concordant with

repeated spot-to-labyrinthine transitions. Whole-genome

sequencing of several labyrinthine and spotted Arothron
pufferfish species further revealed extensive admixture
www.sciencedirect.com
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across phylogenetic lineages, with labyrinthine species

having portions of spotted genomes, consistent with ances-

tral hybridization events leading to spotted–labyrinthine

transitions [38��].

Fish in black and white
The preceding section emphasized studies of periodic

patterns, but a different kind of pigmentation has evolved

in deep sea fishes. Species across several orders are ‘ultra-

black,’ reflecting as little light as the darkest of organisms

or man-made materials (Figure 2a). This likely helps to

avoid being seen by predators—or tipping off prey—even

when the only light is from one’s own bioluminescent

lure. Ultra-black pigmentation has arisen convergently

and depends on exceptionally large, rounded, and

densely packed melanin-containing organelles— melano-

somes—that meet theoretical predictions for minimizing

reflectance [39��]. Remarkably, these melanosomes

appear to be loose in the stroma, rather than contained

within cells. It remains to be determined whether

melanosomes are extruded from melanophores, similar

to how melanocytes deliver melanin to keratinocytes for

incorporation into hair or feathers, or melanosomes
Figure 2

(a)

(b)
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Uniform pigmentation when light is absent. (a) The ultra-black

bathypelagic fish Oneirodes eschrichtii, illustrating dark integument

and lure for catching prey. Inset, scanning electron micrograph

showing melanosomes (m), amongst collagen fibrils (arrowhead)

beneath the epidermis (e; modified from Ref. [39��]). (b) Preserved

specimens of the albino cave cichlid Lamprologus lethops (top) and a

closely related surface species L. teugelsi (bottom). Photo credits, ã
Danté Fenolio, DEEPEND project (a) and Melanie Stiassny (b).

www.sciencedirect.com 
remain after melanophores die, or have another

origin entirely. Deep sea fishes may never be amenable

to experiments in the lab, but other approaches will

hopefully provide clues to the cellular mechanisms that

underlie this remarkable phenotype.

The opposite phenotype occurs in another permanently

dark environment, caves (Figure 2b). There are more

than 200 species of cave-dwelling fishes, across which

melanin has been lost independently. Whether this

is because selection no longer maintains a pigmentary

phenotype that cannot be seen, or because there are

specific advantages to its elimination, remains unclear

[40]. The most-studied case is Mexican tetra, Astyanax
mexicanus, in which melanin has been lost owing to

mutation in an orthologue of the human albinism gene

OCA2 [41,42]. An oca2 mutation is likewise responsible for

albinism in a cave-dwelling cichlid [43].

Studies of additional cave species should indicate

whether changes at this locus or others [44] have contrib-

uted to albinism more generally, and would provide clues

to how genetic architecture factors into regressive pheno-

typic evolution.

Diversification of chromatophore types
Cavefish can be white owing to loss of melanin, but even

surface fish often have white pattern features.

Their cellular bases point to roles for chromatophore-type

diversification in generating pigmentary phenotypes.

White chromatophores are referred to traditionally as

‘leucophores’ [5], and one example occurs in fin tips of

zebrafish, where they may be especially visible during

social interactions [45��] (Figure 3a,b). Surprisingly, these

cells develop not from unpigmented stem cells, like other

fin chromatophores [46], but from pigmented melano-

phores that lose their melanin while accumulating

irregular crystals of guanine—the same material in

iridophore-reflecting platelets [45��] (Figure 3g,h). The

mechanisms underlying transformation from melano-

phore to ‘melanoleucophore,’ and the reasons why

different danios have very different complements of

these cells, remain to be determined.

A different type of white cell is responsible for white bars

of clownfish Amphiprion ocelaris [47�] (Figure 4d, top left).

Here, bona fide iridophores have centripetally arranged

stacks of guanine-reflecting platelets, resulting in a matte

white rather than iridescence (Figure 3i). These cells are

just one of several iridophore subtypes, having distinct

appearances and subcellular architectures, at least three

of which occur in zebrafish alone [12�,48] (Figure 3c).

Other poorly known chromatophores include red erythro-

phores (Figure 3e), unusual blue cyanophores (Figure 3f),

and even polychromatic cells with properties of

more than one chromatophore class. For instance,
Current Opinion in Genetics & Development 2021, 69:88–96
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Figure 3

(a)

(g) (h) (i) (j)

(b) (e)

(f)(d)

(c)
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Chromatophore diversity. (a) The flank of a wild-type zebrafish, illustrating locations of cells shown in (b), (c), and (d). (b) Melanoleucophores (ML)

with white deposits of crystalline guanine. Some of these cells, still in the process of losing melanin derived from their melanophore precursors,

are also evident (arrowhead) [45��]. (c) Two of the three described classes of iridophores. ID have disordered arrangements of reflecting platelets,

occur densely packed in interstripes and have an intrinsically yellow hue. IO have ordered arrangements of larger reflecting platelets, are sparsely

arranged within stripes, and are able to change their hue physiologically from blue to yellow [12�]. Cells are shown are in a mutant that lacks

melanin and carotenoids, making melanophores and xanthophores invisible. (d) Xantholeucophores (XL) in the anal fin with orange carotenoids

centrally and white deposits peripherally. Some fin iridophores are evident as well. Inset shows loss of xantholeucophore orange coloration in a

scarb1 mutant defective in localizing carotenoid pigments [45��]. (e) Red erythrophores (E) and orange xanthophores (X) in the fin of D.

albolineatus. Fish in (b), (d) and (e) were treated with epinephrine to mimic a natural physiological response in which pigment granules contract

towards cell centers, allowing easier visualization. (f) Blue cyanophores (C) in the fin of Mandarin fish, Synchiropus splendidus (Figure 4d, top

middle). (g)–(i) Transmission electron micrographs illustrating subcellular differences in membrane-bound guanine crystal arrangements. (g) When

guanine crystals (GC) are shaped irregularly, as in this zebrafish melanoleucophore, they give a matte white appearance (g). When crystals take

the form of flat reflecting platelets (RP) in stacks, they can lead to iridescence, as in a zebrafish fin iridophore (h), or a matte white appearance, as

in clownfish (i). (j) In Pseudochromis diadema, irregularly oriented reflecting platelets are combined with carotenoids in the same cell to generate a

matte violet (Figure 4d top right). Photo credits, [51] (f), [47�] (g), [52] (j). Scale bar in (b) for (b)–(f), 50 mm; in (g) for (g) and (h), 500 nm; in (i) for (i)

and (j), 2 mm.
‘xantholeucophores’ of zebrafish have a white material

that may be colorless pteridine, but also orange carote-

noids, like xanthophores (Figure 3d) [45��]. Embryonic

leucophores of medaka, Oryzias latipes, seem to use uric

acid for their white component, but also yellow pteridine,

similar to xanthophores with which they share a lineage

[5,49,50]. Other fishes have reddish-violet ‘erythro-

iridophores’ with reflecting platelets and carotenoids

(Figure 3j), and blue-brown ‘erythro-cyanophores’

[51,52]. Additional cell types probably await discovery.

The variety of cell types and lineage origins, which

include both neural crest cells and latent stem cells,
Current Opinion in Genetics & Development 2021, 69:88–96 
suggests the existence of exciting opportunities to under-

stand phenotypic evolution through the gain (or loss) of

mechanisms of specification and states of differentiation

at the cellular level.

Fish pigment patterns: even more open
questions
There are, literally, plenty of fish in the sea, and

elsewhere, that raise additional questions about pattern

evolution. For example, many species have distinctive

‘ornaments’ that are sometimes specific to males that use

them as signals in courtship or spawning but can suffer
www.sciencedirect.com
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Figure 4

(a) (d)

(b)

(c)
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Pattern variation within and between species. (a) Different positions and numbers of ornaments in three male guppies (melanophores, black

arrowhead; xanthophores, brown arrowhead). (b) Egg dummies in the fins of Astatotilapia burtoni and Astatoreochromis straeleni [55]. (c) In

Anampses chyrsocephalus females (top) and males (bottom) are so different they were thought to be different species. (d) Reef fishes, from upper

left: clownfish A. ocelaris, mandarinfish Synchiropus splendidus, P. diadema, Balistoides conspicillum, Xanichthys mentoT, Choerodon fasciatusT,

Parupeneus barberinoidesR, Centropyge bicolorR, Thalassoma rueppelliiR, Apolemichthys arcuatusT, Chaetodontoplus duboulayiT, Rhincanthus

abyssusT, Chaetodon larvatusR, Chaetodon ornatissimusT, Chaetodon collareT. Images courtesy: Lengxob Yong (a); modified from Ref. [55] (b);

John E. Randall (c); T, Yi-Kai Tea, R, Luiz Rocha (d).
increased predation because of them [3,53]. One famous

example is the spots of guppy, Poecilia reticulata, which

differ in number, color, and position between individuals

(Figure 4a). Although such variation has long been

ascribed to allelic differences on the Y chromosome, a

recent analysis revealed sex-linkage of ornament size and

color but not the presence or absence of the

ornaments themselves [54�]. Autosomal control suggests

new possibilities for meitoic mapping and identifying the

relevant loci.

A second kind of ornament is the ‘egg dummy’ of cichlids,

present in �1500 species (Figure 4b). The presence of

egg dummies in a species correlates with the presence of

a transposable element insertion that drives higher

expression of the transcription factor gene fhl2b in
www.sciencedirect.com 
iridophores [55]. The developmental mechanisms

responsible for these and other ornaments will be inter-

esting to uncover, as they may offer a counterpoint to

periodic patterns: one might expect especially important

roles for positional information in the forms of cues

provided by the tissue environment, and perhaps lesser

roles for self-organizing interactions among

chromatophores.

Male ornaments are just one type of sexual dichromatism,

in which sexes differ in pigmentation (Figure 4c). How

such very different patterns emerge, presumably in

response to hormonal signaling, remains mysterious.

Indeed, the evolution of endocrine control is itself a

fascinating problem. For example, thyroid hormone is

essential for abruptly remodeling tadpoles into frogs and
Current Opinion in Genetics & Development 2021, 69:88–96
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for chromatophore maturation over �2 weeks in zebrafish

[56,57�]. In reef fish, Acanthurus triosegus, however, a

sudden maturation of adult vertical bars over �4 hours

(!) is independent of thyroid hormone, depending instead

on a mechanism not yet identified [58].

Understanding how local chromatophore behavior is inte-

grated with global endocrine control, and how behaviors

evolve to be more or less responsive to hormonal influ-

ences will be important for understanding many types of

patterns.

Finally, there is perhaps no group that better exemplifies

diversity in pigmentation than reef fishes, which have

pattern features, and probably cell types, not present in

other models (Figure 4d). Advances in evolutionary

genetic approaches, computational pattern description,

gene editing, and captive husbandry are already making

some of these patterns accessible to analysis [38��,59,60].
The prospect of identifying genes and cell behaviors

underlying pattern diversification in these fishes is just

one small reason, among many larger reasons, to preserve

such extraordinary diversity and the environment it

depends on.
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