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Introduction

The pigmentation of adult zebrafish consists of
several different elements and depends on several
distinct classes of pigment cells. By far the most promi-
nent elements are the dark stripes and light “inter-
stripes” that run horizontally across the body. Pigment
cellsdin ectotherms, sometimes referred to as
chromatophoresdare also present on the scales (confer-
ring a darker cast dorsally than ventrally), on the head,
and on the fins, where they form stripes and other
arrangements.

Chromatophores are derived embryologically from
the neural crest, which also contributes to the craniofacial
skeleton, peripheral nervous system, and other tissues
and organs (Dupin et al., 2018; Hörstadius, 1950). In
zebrafish, the most abundant chromatophores are the
black melanophores, yellow/orange xanthophores, and
iridescent iridophores (Fujii, 1993; Johnson et al., 1995;
Mort et al., 2015; Schartl et al., 2016). Melanophores are
homologous to melanocytes of birds and mammals but
differ from melanocytes in retaining melanin granules
rather than transferring them to keratinocytes. Xantho-
phores contain pteridines, carotenoids, or both pigments,
which are detectable by their autofluorescence. Irido-
phores, by contrast, depend for their iridescence on
crystalline guanine, held within stacked reflecting plate-
lets. Additional cell typesdwhite, or white and yellow
leucophoresdoccur in the fins (Lewis et al., 2019). As
for melanophores, pigments and platelets of xantho-
phores, iridophores, and leucophores, are retained intra-
cellularly. So the pigment pattern is a direct indication of
chromatophore distributions.

Adult stripes consist of melanophores and sparse
iridophores, whereas interstripes have densely packed
iridophores and xanthophores (Fig. 9.1(Patterson and
Parichy, 2009)). Such a distinctive pattern suggests
behavioral or ecological significance, and indeed,
pigment patterns of other fishes can have many roles:

helping individuals to avoid predators, to recognize
others of their own species, and to choose their mates
(Marshall et al., 2018; Price et al., 2008). Laboratory
studies of zebrafish suggest that pigmentation, and
stripes in particular, facilitate social aggregation, or
shoaling (Engeszer et al., 2008; Parichy, 2015; Rosenthal
et al., 2005). However, the natural history of zebrafish re-
mains poorly understood, and the specific functions of
pigmentation have yet to be addressed in the wild.

Because stripe pattern formation is understood best,
its events are described in some detail below. Other tis-
sues are mentioned briefly, as are physiological and path-
ological changes that can affect pigmentation. In recent
years, transgenic models of zebrafish also have been
used to understand the origins and progression of mela-
noma and to identify potential therapies for this deadly
cancer of the melanocyte lineage (Kaufman, 2016). This
important but distinct topic is not reviewed here.

Stripes and Their Development

The pigmentation of adult zebrafish differs markedly
from the earliest expression of this trait, in late embryos
and early larvae (EL) (Fig. 9.1) (Dutton et al., 2001;
Kimmel et al., 1995; Parichy et al., 2009). At these stages,
melanophores occur on the head and extend posteriorly
along the dorsal myotomes, wrapping around to the
ventral myotomes. Melanophores also line the dorsal
and ventral edges of the yolk and swim bladder. A few
melanophores are found in the middle of the flank at
the horizontal myoseptum. Iridophores occur sparsely
in the regions occupied by melanophores. By contrast,
xanthophores are scattered widely over the flank and
dorsum. These cells gradually fade and are no longer
apparent by w5.0 standardized standard length (SSL,
approximating 5.0 mm or w10-day postfertilization)
(McMenamin et al., 2014; Parichy et al., 2009). What, if
any, function the EL pattern serves, remains unclear,
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but given the locations of melanophores and iridophores,
one might imagine they help to protect stem cell popula-
tions (brain, spinal cord, gonads) or other tissues from
ultraviolet light in the shallow waters where zebrafish
breed (Mueller et al., 2014; Parichy, 2015).

Numerous mutants have defects in EL pigmentation
and the genes corresponding to many of these have
been identified (Arduini et al., 2008; Cornell et al.,
2004; Elizondo et al., 2005; Kelsh et al., 1996; Odenthal
et al., 1996). Often, defects arise from failures to synthe-
size cell-type-specific pigments or to localize them in
specialized organelles (Dooley et al., 2013b; Lamason
et al., 2005; Lister, 2019). Pigmentation defects in other
mutants arise because of failures to specify or maintain
one or more chromatophore lineages (Dutton et al.,
2001; Lister et al., 1999; Lopes et al., 2008; Nord et al.,
2016; Parichy et al., 2000; Petratou et al., 2018). Only a
few mutants have been identified that affect the
patterning or localization of chromatophores
(Camargo-Sosa et al., 2019; Parichy et al., 1999; Svetic
et al., 2007; Zhang et al., 2018), suggesting a robustness
to these processes, or a dependence on genes having
essential functions prior to EL pattern formation.

The EL arrangement of chromatophores persists with
few changes until 4.5e5.0 SSL, when new chromato-
phores start to appear, and the adult pattern begins to
form (Parichy et al., 2009) (Fig. 9.2). Although overt
morphological changes are not manifest until the
larva-to-adult transformationdalong with other
changes to the skin and other organsdremodeling of
pigmentation depends on multipotent, neural-crest
derived pigment cell progenitors established within
the peripheral nervous system during early embryonic
development (Budi et al., 2011, 2008; Dooley et al.,
2013a; Hultman et al., 2009; Saunders et al., 2019; Singh
et al., 2014, 2016; Tryon et al., 2011). During later adult
pattern formation, some progenitors migrate to the

hypodermis of the skin (Aman & Parichy, this volume)
where they differentiate as iridophores that will form a
“primary” interstripe in the middle of the flank. Irido-
phores first appear anteriorly, then far posteriorly, and
then in between, until the interstripe is continuous
(Parichy et al., 2009). The positioning of iridophores
requires normal myotome development, as mutants
with defects in myoseptal boundaries have disrupted
interstripes (Frohnhofer et al., 2013; Parichy et al.,
2015). Additional signals required for iridophore differ-
entiation, proliferation, and survival come from fibro-
blasts or other cells of the skin, or superficial cells of
the myotomes (Fadeev et al., 2018; Krauss et al., 2014;
Lang et al., 2009; Mo et al., 2017; Spiewak et al., 2018).

Shortly after adult iridophores begin to develop,
pigment cell progenitors contribute new melanophores
as well (5.9 SSL) (Parichy et al., 2003b, 2009). Newly
melanizing cells are evident in prospective stripe
and interstripe regions. As pattern implementation con-
tinues, additional, morphologically distinct iridophores
appear within the prospective stripes.

Subsequently, the initial pattern of an interstripe and
two stripes becomes more distinctive. This depends on
a consolidation of the melanophores into stripe regions:
melanophores differentiating outside of these regionsd
and a few EL melanophores at the horizontal
myoseptumdeither migrate short distances to join
stripes, or they die or are obscured by iridophores
(Parichy et al., 2000, 2003b; Patterson et al., 2013; Takaha-
shi et al., 2008). Several studies have revealed the impor-
tance of iridophores in promoting melanophore
localization to stripe regions, and excluding these cells
from the interstripe itself (Fadeev et al., 2015; Frohnhofer
et al., 2013; Krauss et al., 2013; Patterson et al., 2013, 2014).

Two events occur nearly simultaneously with stripe
consolidation and are important to this process. First,
new iridophores appear and become increasingly dense

FIGURE 9.1 Embryo/early larva (EL) and adult pigmentation of zebrafish. Closeup of adult stripe and interstripe corresponds to approximate
position of boxed regions. Pigment cells have been treated with epinephrine, which contracts pigment of melanophores and xanthophores toward
cell centers. Melanophores are black, xanthophores appear as pale orange (e.g., red outline), and iridophores are iridescent, forming a yellowish
mat in the interstripe and dispersed blue cells in the stripe.
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within new, “secondary” interstripes that develop adja-
cent to the primary stripes and serve to bound their
“distal” edges (Patterson et al., 2013, 2014; Singh et al.,
2014; Spiewak et al., 2018). Second, xanthophores differ-
entiate in association with iridophores of the primary
interstripe (w8.0 SSL) owing to a xanthophore-
maturation factor produced by these iridophores (Patter-
son et al., 2013). Iridophores, therefore, contribute to the
arrangement of pigmented xanthophores, in addition to
their effects on melanophores. Xanthophores, in turn, in-
fluence the localization and survival of melanophores
and are essential for normal consolidation and subse-
quent maintenance of the stripes (Hamada et al., 2014;
Nakamasu et al., 2009; Parichy et al., 2000, 2003a). Both
xanthophores and melanophores additionally depend
on permissive factors provided by other integumentary
cell types (Hultman et al., 2007; Patterson et al., 2013).

The origin of many xanthophores differs from adult
melanophores and adult iridophores. Rather than
arising from a postembryonic pigment cell progenitor,
many pigmented xanthophores of the adult come
directly from xanthophores of the EL pattern. As noted
above, these cells fade from view, but they also prolifer-
ate and persist during subsequent stages, and it is some
of these cells that reacquire pigmentation, when in
association with interstripe iridophores (McMenamin
et al., 2014). The color of xanthophores at EL stages is
due to yellow pteridines (Lister, 2019; Odenthal et al.,
1996). Their color in the adult results from the thyroid-
hormone dependent processing and accumulation of
dietarily derived yellow/orange carotenoids

(Granneman et al., 2017; Saunders et al., 2019). Besides
xanthophores that develop directly from the neural crest
and EL xanthophores, at least some adult xanthophores
develop from postembryonic pigment cell progenitors
(McMenamin et al., 2014; Singh et al., 2016).

Together, these events are responsible for a primary
pattern consisting of an interstripe bordered by two
stripes. As the fish grow, this pattern is reiterated with
increasingly well-defined secondary interstripes and
stripes, added dorsally and ventrally. Just as interactions
between pigment cells are required for patterning the
primary pattern elements, interactions between pigment
cells, and between pigment cells and other cells in their
environment, are required for patterning the secondary
elements (Parichy et al., 2003a; Patterson et al., 2013,
2014; Spiewak et al., 2018). The overall dynamics of
stripe development resemble those predicted by Turing
models of pattern formation (Watanabe et al., 2015);
grounding such similarities in discrete biological mech-
anisms remains a substantial and important challenge.

By late juvenile stages (w16 SSL), a flank pattern of
stripes and interstripes has formed that will persist
into the adult (�26 SSL). Also by juvenile and adult
stages, pigment cells comprising this pattern have
become stratified: xanthophores are outermost, and
iridophores, then melanophores, are found inwardly.
An additional, less studied, population of spindle-
shaped iridophores with large reflecting platelets occurs
in smaller numbers even deeper in the hypodermis
(Hirata et al., 2003, 2005).

FIGURE 9.2 Events of adult pattern formation. In the EL pattern, melanophores, xanthophores, and a few iridophores are present. Gray line

indicates horizontal myoseptum. By the establishment of the adult pattern, the fish is growing rapidly, and EL xanthophores have faded, entering
a cryptic state. Some ELmelanophoresmove, and some are lost. New adult iridophores start to differentiate, and new adult melanophores begin to
appear. During a period of pattern implementation, adult melanophores increase in number, xanthophores acquire new pigment, and iridophores
appear within the prospective stripe regions. Consolidation of stripes occurs with the onset of pattern reiteration. Ultimately, a juvenile pattern is
formed, which persists with some additional reiteration in the adult. i1: primary interstripe; 1D, 1V: primary stripes; i2D, i2V, secondary inter-
stripes. Ranges below panels are SSL (Parichy et al., 2009).
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Scales, Fins, and Other Sites of Pigmentation

As zebrafish enter the juvenile stages of development,
they have transparent scales covering their bodies
((Parichy et al., 2009); Aman & Parichy, this volume).
The same multipotent pigment cell progenitors that
give rise to many chromatophores of the hypodermal
stripes and interstripes are responsible for populating
scales with chromatophores; indeed, individual progen-
itors can contribute to both locations (Singh et al., 2016).
Melanophores differentiate prominently on the dorsal
scales, but these cells are repressed from differentiating
ventrally by the agouti signaling pathway, which has a
similar function in repressing the differentiation of me-
lanocytes on the ventrum of many mammals (Cal
et al., 2019).

Pigmentation of adult fins begins as soon as they
develop; pattern outcomes differ between anatomical lo-
cations (Parichy et al., 2009). In the caudal and anal fins,
stripes and interstripes develop, but their arrangements
are independent of iridophores, which occur in rela-
tively small numbers at these sites. The dorsal and
paired fins have similar complements of chromato-
phores, but the cells remain largely intermingled and
so do not generate distinct patterns.

Fins also harbor leucophores (Lewis et al., 2019).
Distal regions of the dorsal fin and the most distal por-
tions of the caudal fin lobes develop leucophores that
arise by transdifferentiation of melanophore progeni-
tors. These cells lose melanin, and in its place, acquire
crystalline deposits of guanine. These “melanoleuco-
phores” are white owing to a disordered arrangement
of irregularly shaped organelles containing guanine
crystals. This contrasts with the iridescence conferred
by stacked, regularly shaped reflecting platelets of gua-
nine crystals in iridophores. Melanoleucophores reflect
light of all wavelengths: they are bright in visible light,
and the reflections from these cells can be mistaken for
the fluorescence of transgenic reporters. Due to their
prominent locations, these cells may contribute to spe-
cies recognition, or aggressive or courtship displays. In
the laboratory, zebrafish prefer to shoal with fish that
have intact complements of melanoleucophores. The
second class of leucophores, “xantholeucophores,” is
found in the interstripes of the anal fin, and contains yel-
low/orange carotenoids, similar to xanthophores. Crys-
talline guanine is not detectable in xantholeucophores.

Finally, zebrafish also have chromatophores in other
locations, including iridophores that line the perito-
neum and cover the operculum, and cells of the choroid

and iris of the eye (retinal pigmented epithelium derives
from the central nervous system) (Hirata et al., 2005;
Spiewak et al., 2018). Little is known about the develop-
ment or functional significance of these features.

Physiological and Pathological Effects on
Pigmentation

Pigmentation changes ontogenetically, but pigment
cells also respond physiologically to alterations of envi-
ronment or health status. A normal physiological
response occurs in background adaptation. When fish
are placed on a light background, melanophores con-
tract melanin-containing melanosomes toward their
centers, resulting in an overall paler appearance to the
fish. On a dark background, the opposite response
occurs. Such behaviors depend on endocrine and neuro-
endocrine effectors and have been studied extensively in
zebrafish and other species (Counts et al., 2009; Fujii,
1993; Iwashita et al., 2006; Lewis et al., 2019; Oshima
et al., 2002; Sheets et al., 2007). Although responses are
physiological, long-term stimulation can lead to
morphological alterations resulting from cell death or
overproduction (Sugimoto, 2002; Sugimoto et al., 2005).

Pigmentation can also change in response to stress or
pathology, sometimes mimicking the blanching
response of healthy fish adapted to a light background.
Other pathologies can yield dark phenotypes. Addition-
ally, injuries sometimes result in pigmentary “scars.”
Zebrafish have a remarkable ability to heal integumen-
tary wounds, but deep wounds, trauma, or inflamma-
tory responses can generate ectopic accumulations of
chromatophores (Levesque et al., 2013; Richardson
et al., 2013) Bilateral asymmetry typically distinguishes
suchmarks from pattern phenotypes arising through ge-
netic alterations.

Conclusions

Studies of zebrafish pigmentation have provided in-
sights into mechanisms of pattern formation, specifica-
tion, and differentiation of neural crest lineages,
cellular physiology, and individual behavior. Pigmenta-
tion can also provide clues to fish health and physiology.
Due to the superficial location of chromatophores, their
accessibility to visualization, and their cell-autonomous
markers of differentiation state, this system should
continue to be useful for understanding the basic and
applied aspects of organismal form and function.
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