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Introduction

The zebrafish, like all animals, is coveredwith sophis-
ticated skin that acts as both a wall and a window to the
external environment. The skin is traditionally divided
into three layers. A superficial epidermisdcomprising
a stratified epitheliumdprovides barrier and sensory
function. The underlying dermis is dominated by bony
elasmoid scales and a deep collagenous stroma that
together armor and support the muscles and organs.
The relatively thin hypodermis lies deeper, at the
boundary between skin and muscle, and harbors adipo-
cytes and pigment cells. Below, we give a brief primer on
the development and anatomy of zebrafish skin.

Epidermal Development and Anatomy

The epidermis represents the ultimate boundary be-
tween the fish and its environment. It forms a semiim-
permeable barrier while also allowing sensory
functions. The primary epidermis, known as the envel-
oping layer, first develops before gastrulation (Kimmel,
Warga, & Schilling, 1990). Following gastrulation, the
enveloping layer becomes the outermost skin cell layer,
the periderm, and basal cells arise from nonneural ecto-
derm, thereby generating a bilayered epidermis (Bak-
kers, Hild, Kramer, Furutani-Seiki, & Hammerschmidt,
2002; Lee & Kimelman, 2002). Periderm cells are con-
nected by tight junctions forming a solute barrier and
are decorated with elaborate, wavy microridges that in-
crease epidermal surface area and likely aid in mucous
retention (Hawkes, 1974; Kiener, Selptsova-Friedrich,
& Hunziker, 2008; Lam, Mangos, Green, Reiser, &

Huttenlocher, 2015; Whitear 1970). This bilayered state
persists through the early larval period until 6e7 stan-
dardized standard length [SSL (Parichy et al. 2009);
w6e7 mm standard length], when descendants of basal
cells generate the intermediate suprabasal cell layers
(Guzman, Ramos-Balderas, Carrillo-Rosas, & Maldo-
nado, 2013; Lee, Asharani, & Carney, 2014).

In adult skin, there are two to eight layers of
suprabasal cells over the surface of the fish, whereas
superficial periderm and deep basal cells remain as
monolayers (Fig. 8.1). Similar to mammalian epidermis,
basal cells serve as epidermal stem cells, and their
proliferation as well as suprabasal cell proliferation is
regulated by DN-p63. Intermediate suprabasal cells are
the most proliferative cells in the epidermis and most
appear undifferentiated. It is possible they serve as a
transient amplifying population, though precise line-
ages and stem cell kinetics of the epidermis remain
unresolved (Guzman et al. 2013; Le Guellec, Morvan-
Dubois, & Sire, 2004; Lee & Kimelman, 2002; Quilhac
and Sire 1999; Richardson et al. 2013).

The epidermis harbors several additional cell types.
Goblet cells secrete mucous and club cells produce
alarm substances (Jevtov, Samuelsson, Yao, Amsterdam,
& Ribbeck, 2014). Ionocytes and chemosensory cells aid
in maintaining chemical homeostasis (Coccimiglio &
Jonz, 2012; Cruz, Chao, & Hwang, 2013; Hwang &
Chou, 2013). Somatosensory cells send their nerve
endings into the epidermis enabling a sense of touch
(Rasmussen, Vo, Sagasti, 2018). Moreover, the mechano-
sensory neuromasts of the lateral line are hosted by the
epidermis and enable detection of water motions against
the surface of the fish (Lee, Asharani, Carney, 2014;
Metcalfe, 1985).

91
The Zebrafish in Biomedical Research

© 2020 Elsevier Inc. All rights reserved.https://doi.org/10.1016/B978-0-12-812431-4.00008-7

https://doi.org/10.1016/B978-0-12-812431-4.00008-7


Development and Anatomy of the Hypodermis
and Collagenous Dermal Stroma

The dermis contains a dense collagenous stromadthe
stratum compactumdthat imbues the skin with me-
chanical strength. Basal epidermal cells begin producing
a primary collagenous stroma by 24 h postfertilization
(hpf). Once initiated, the stroma thickens throughout
the life of the fish. By 72 hpf, thin layer of dermal endo-
thelial cells begins to accumulate along the surface of the
muscles to constitute the hypodermis. These cells also
contribute to the growth of the primary stroma. Basal
epidermal and hypodermal cells continue to produce
collagen through the early larval period, building an
ever thicker collagenous stroma. Hypodermal cells
remain a sparse layer in adult fish, where they likely
provide trophic and other support to pigment cells
comprising the stripe pattern and to dermal adipocytes
(Fig. 8.1) (Hirata, Nakamura, & Kondo, 2005; Lang,
Patterson, Gordon, Johnson, & Parichy, 2009; Le Guellec,
Morvan-Dubois, Sire 2004; Minchin and Rawls 2017).

Coincident with stratification of the epidermis, the
primary collagenous stroma of the dermis becomes
organized into a plywood-like arrangement of orthogo-
nally aligned collagen fibers. This stroma remains
devoid of cells until w8 mm SSL (Parichy, Elizondo,
Mills, Gordon, Engeszer, 2009) when it is populated by
dermal fibroblasts to generate the stratum compactum,
a tough yet transparent structural component of the
skin that resists tearing and may provide elastic recoil
to the swim stroke (Fig. 8.1) (Szewciw and Barthelat
2017).

Development and Anatomy of Elasmoid Scales

Hundreds of arrowhead-shaped, calcified scales are
embedded in the dermis of adult zebrafish (Fig. 8.2A).
These overlap precisely like roof tiles so that every posi-
tion along the body is covered by at least two scales,
providing flexible armor that likely protects against
puncture injuries that might be inflicted by cooccurring

FIGURE 8.1 Schematic section through adult zebrafish skin. Depicted is a simplified coronal skin section at the level of a dark stripe in the
trunk. For clarity, adipocytes, blood vessels, nerves, chemosensory cells, ionocytes, immune cells, and other cells are omitted, and those cell types
shown are rendered with exaggerated thickness. The outermost periderm (green) and suprabasal cells (teal) overlie the basal cell monolayer
(cyan). Epidermis wraps around the posterior margin of the calcified scale plate (magenta) and the scale-forming cells (yellow) and is closely
associated with the scale pocket cells (orange). The epidermis contains specialized cell types including goblet cells (blue) and club cells (purple),
secreting mucous and alarm substance, respectively. The surface of the fish is protected by at least two scales. Beneath the scales lies a collagenous
stroma, the stratum compactum (tan), harboring dermal fibroblasts (beige). Dermal endothelial cells of the hypodermis (light brown) line the
muscles (red) at the deep limit of the skin. Pigment cells, includingmelanophores (black) and iridophores (cyan/purple), reside in close proximity
to hypodermal cells.
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predators or other types of trauma (Figs. 8.1, 8.2A,B)
(Engeszer, Patterson, Rao, & Parichy, 2007; Sire, Allizard,
Babiar, Bourguignon, Quilhac, 1997; Zhu, Szewciw, Ver-
nerey, Barthelat, 2013).

After the stratum compactum forms, in 8e10 SSL
larvae, dermal cells accumulate at the superficial limit
of the dermis, in close proximity to the epidermis. These
superficial cells aggregate to form scale papillae (Le
Guellec et al. 2004; Mongera and Nüsslein-Volhard
2013; Shimada et al. 2013; Sire et al. 1997). Dermal
papillae form first in the caudal peduncle and above
the ribs. Additional papillae are added in rows and col-
umns to generate a half-offset hexagonal grid of scales
(Fig. 8.2A,B) (Aman, Fulbright, & Parichy, 2018; Sire
et al. 1997).

Initiation of scale papillae relies on interactions be-
tween epidermis and dermis involving ectodysplasin,
Wnt/b-catenin, and fibroblast growth factor (Fgf)
signaling pathways (Aman et al. 2018; Daane, Rohner,
Konstantinidis, Djuranovic, & Harris, 2015; Harris
et al. 2008; Rohner et al. 2009). Remarkably, interactions
between signaling pathways and the cell behaviors they
govern during zebrafish scale development resemble
those governing formation and patterning of skin
appendage like feathers and hair in terrestrial verte-
brates. This implies that, despite profound differences
in matrix compositionddermal calcified matrix of
zebrafish scales and epidermal keratin of terrestrial

appendagesdall skin appendages likely share a com-
mon ancestry, and mechanisms that govern their early
development are similar across vertebrates.

Following aggregation, dermal papillae produce the
initial calcified matrix of the scale plate (Aman, Ful-
bright, Parichy, 2018; Sire et al. 1997). Developing scales
are oriented toward the posterior by the planar cell po-
larity machinery, and their growth is driven by Sonic
hedgehog (Shh) and Fgf-dependent proliferation and
growth of osteoblast-like scale-forming cells accompa-
nied by expansion of the calcified matrix (Aman et al.
2018; Cox et al. 2018; Iwasaki, Kuroda, Kawakami, &
Wada, 2018; Rasmussen et al. 2018; Sire et al. 1997).

The structure of the scale plate consists of a basal
layer of weakly ossified collagen, called isopedine, cap-
ped by the more strongly ossified external layer. At the
posterior margin of the scale, a highly calcified,
collagen-poor limiting layer is present (Fig. 8.2C). The
scale-forming cells line the deep aspect of the scale
and loop around the limiting layer at the posterior scale
margin (Fig. 8.1). Gene expression in these posterior
margin scale-forming cells is distinct from other scale-
forming cells. It is this population that proliferates to
add scale-forming cells during growth (Aman et al.
2018; Cox et al. 2018; Iwasaki et al. 2018). As growth pro-
ceeds, limiting layer matrix is deposited in waves, lead-
ing to concentric arcs of more heavily calcified circuli in
the mature scale (Fig. 8.2C) (Sire et al. 1997). The scale

FIGURE 8.2 Distribution andmorphology of zebrafish scales. (A) Scales cover the postcranial surface of the fish, here revealed by expression
of sp7:EGFP in scale-forming cells (yellow) as well as Alizarin Red-S labeled calcified matrix (magenta). (B) Overlapping scales are arranged in a
half-offset, hexagonal grid. (C) A freshly plucked, Alizarin Red-S stained scale shows a relatively heavily calcified limiting layer at the posterior
margin and concentric circuli (arrowheads in inset). Note the different arrangement of circuli in the protruding posterior and embedded anterior
portion of the scale. The protruding portion of the scale contains matrix-free radii that organize and house neurons and vasculature of the skin
(arrow in inset).
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plate is also punctuated by matrix-free channels, the
radii, that organize and house neuronal processes and
vasculature of the skin (Rasmussen et al. 2018; Sire
et al. 1997). During scale outgrowth, epidermal Shh trig-
gers accumulation of a thin layer of scale pocket cells un-
derneath the scale-forming cells (Fig. 8.1). Epidermal
cells invaginate along these cells yielding the final
partially protruding organization of the adult scale
(Aman et al. 2018; Sire et al. 1997).

The evolutionary relationships between elasmoid
scale extracellular matrix and calcified matrices in
mammalsdenamel, dentin, cartilage, and boned
remain uncertain. The precise homologies of cells
secreting these matrices are similarly ambiguous. Pale-
ontological and other evidence indicate that thin, flex-
ible scales of zebrafish and other teleosts descended
from heavy, enameled rhomboid scales of ancient verte-
brates. Such rhomboid scales contain clear examples of
matrix resembling enamel, dentine, and bone, a state
preserved in teleost sister groups, the elasmobranchs
(sharks/rays), polypterids (bichirs/reedfish), and holo-
steans (bowfin/gars) (Janvier, 1996; Märss, 2006; Sire
1990; Sire and Huysseune 2003). In this respect, scales
of zebrafish resemble mammalian teeth perhaps more
than mammalian bone.

The cells that produce the ossifiedmatrix of the zebra-
fish scale plate have been called osteoblasts because the
matrix they secrete is calcified like bone and because
they express sp7/osterix, encoding a transcription factor
utilized by mammalian osteoblasts (Cox et al. 2018; Iwa-
saki et al. 2018; Metz, de Vrieze, Lock, Schulten, & Flik,
2012; Rasmussen et al. 2018). It is important to note,
however, that mammalian sp7 is a general regulator of
multiple cell types that produce calcified matrices,
including enamel-producing ameloblasts and dentin-
expressing odontoblasts (Bae et al. 2018).

To acknowledge the presently ambiguous homology
of zebrafish-calcified matrix-producing cells, and to
honor the prior nomenclatural recommendations of
Jean-Yves Sire, we recommend referring to these Sp7þ
cells simply as scale-forming cells, rather than osteo-
blasts per se (Sire et al. 1997). Deeper investigation of
gene expression and its regulatory network should
allow a more precise understanding of scale-forming
cell evolution and will enable rigorous comparisons of
biology between these and other matrix-secreting popu-
lations across vertebrates.

Zebrafish Skin as a Model for Skin Disease,
Wound Healing and Regeneration

The optical transparency and superficial location of
zebrafish skin make it exceptionally accessible to manip-
ulation and imaging. These advantages, coupled with

histological and molecular similarities to human skin,
make zebrafish an attractive system for understanding
cellular and molecular basis of skin disease, wound
healing, and regeneration. Indeed, zebrafish with muta-
tions in genes associated with human cutaneous disease
often recapitulate aspects of these diseases and can pro-
vide insights into pathology (Feitosa, Richardson, Bloch,
& Hammerschmidt, 2011; Hatzold et al. 2016; Li et al.
2011a, 2011b). Zebrafish skin is also highly regenerative
and is proving to be an excellent system for uncovering
mechanisms that underlie injury response, wound heal-
ing, and tissue regeneration (Armstrong, Henner, Stew-
art, & Stankunas, 2017; Chen et al. 2016; Cox et al. 2018;
Gault, Enyedi, & Niethammer, 2014; Kang, Nachtrab, &
Poss, 2013; Richardson et al. 2013, 2016).

Outlook

Zebrafish skin affords the biomedical research com-
munity a powerful system to address fundamental ques-
tions of stem cell biology, patterning, morphogenesis,
regeneration, and disease. Emerging genetic reagents,
as well as imaging and analytical methods, will further
enable the study of zebrafish skin and will likely
contribute novel insights into these important areas of
biology and pathology.
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